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Abstract. By virtue of Balmer’s celebrated theorem, the classification of thick tensor
ideals of a tensor triangulated category T is equivalent to the topological structure of
its Balmer spectrum Spc T . Motivated by this theorem, we discuss connectedness and
irreducibility of the Balmer spectrum of a right bounded derived category of finitely
generated modules over a commutative ring.

1. Introduction

The content of this article is based on the paper [7].
Tensor triangulated geometry is a theory introduced by Balmer [1] to study tensor tri-

angulated categories by algebro-geometric methods. Let (T ,⊗,1) be an essentially small
tensor triangulated category (i.e., a triangulated category T equipped with a symmetric
monoidal tensor product ⊗ which is compatible with the triangulated structure). Then
Balmer defined a topological space Spc T which we call the Balmer spectrum of T . A
celebrated theorem due to Balmer [1] states that the radical thick tensor ideals of T are
classified using the geometry of Spc T :

Theorem 1 (Balmer). There is an order-preserving one-to-one correspondence

{radical thick tensor ideals of T }
f // {Thomason subsets of SpcT },
g

oo

where f and g are given by f(X ) := SppX :=
∪

X∈X SppX and g(W ) := Spp−1(W ) :=
{X ∈ T | SppX ⊆ W}, respectively.

From this result, if we want to classify the radical thick tensor ideals of a given ten-
sor triangulated category T , we have only to understand the topological space Spc T .
Therefore, it is crucial to discuss topological properties of the Balmer spectrum.

In this article, we consider the right bounded derived category D−(modR) of a com-
mutative Noetherian ring R. This triangulated category is a tensor triangulated cate-
gory with respect to derived tensor product, and we can consider its Balmer spectrum
SpcD−(modR).

The detailed version [7] of this paper has been published in Journal of Pure and Applied Algebra.



2. Tensor Triangular Geometry

In this section, let us recalling Balmer’s tensor triangular geometry [1]. Throughout
this section, fix a tensor triangulated category (T ,⊗,1). The following categories are
examples of tensor triangulated categories which appear in algebra.

Example 2. (1) Let X be a scheme. Then the derived category Dperf(X) of perfect
complexes of X forms a tensor triangulated category together with derived tensor
product ⊗L

OX
and unit OX .

(2) Let k be a field and G a finite group. Then the stable category modR forms a
tensor triangulated category together with tensor product ⊗k and unit k.

(3) Let R be a commutative noetherian ring. Then the right bounded derived category
D−(modR) is a tensor triangulated category with respect to derived tensor product
⊗L

R and unit R.

One can define the notions of thick tensor ideals, radical thick tensor ideals and prime
thick tensor ideals, which behave similarly to ideals, radical ideals, and prime ideals of a
commutative ring.

Definition 3. (cf. [1, Definitions 1.2, 2.1 and 4.1])

(1) We say that an addtive full subcategory X of T is a thick tensor ideal if
(a) X is triangulated: for any triangle L → M → N → L[1] in T , if two out of

L,M,N belongs to X , then so does the third,
(b) X is thick: if L⊗M belongs to X , then so do L and M ,
(c) X is an ideal: for any L ∈ X and M ∈ T , their tensor product L⊗M ∈ T .

(2) For a thick tensor ideal X , we denote by
√
X the radical of X , that is, the sub-

category of T consisting of objects M such that the n-fold tensor product M⊗n

belongs to X for some integer n.
We say that a thick tensor ideal X is radical if

√
X = X .

(3) We say that a proper thick tensor ideal P is prime if M ⊗ N ∈ P implies either
M ∈ P or N ∈ P . Denote by Spc T the set of prime thick tensor ideals of T .

Let us give one typical example of thick tensor ideals and prime thick tensor ideals for
D−(modR).

Example 4. For an object M ∈ D−(modR), define its cohomological support by

SuppM := {p ∈ SpecR | Mp ̸∼= 0 in D−(modRp)}
Then for any subset W of SpecR,

Supp−1(W ) := {M ∈ D−(modR) | SuppM ⊆ W}.
is a prime thick tensor ideal. Indeed, it is easily verify that Supp−1(W ) is a thick tensor
ideal since localization defines an exact functor.

Taking W := {q ∈ SpecR mod q ̸⊆ p} for a fixed p, we have a prime thick tensor ideal

S(p) := {M ∈ D−(modR) | Mp
∼= 0}.

From the above argument, S(p) is a thick tensor ideal. Moreover, it is prime by Nakayama’s
lemma.



Next, let us introduce a topology on Spc T , which is inspired the Zariski topology.

Definition 5. (cf. [1, Definition 2.1]) For a subset E of T , define

Z(E) := {P ∈ Spc T | P ∩ E = ∅} ⊆ Spc T
Then one can easily check that the family {Z(E) | E ⊆ T } forms a closed subsets of Spc T .
Precisely, these subsets of Spc T satisfies:

(1) Z(∅) = Spc T , Z(T ) = ∅.
(2) Z(E) ∪ Z(E ′) = Z(E ⊕ E ′), where E ⊕ E = {M ⊕M ′ | M ∈ E ,M ′ ∈ E ′}
(3)

∩
i∈I Z(Ei) = Z(

∪
i∈I Ei).

Thus, Spc T is a topological space with closed subsets Z(E). We call this topological space
the Balmer spectrum of T .

For an object M ∈ T, define its Balmer support by

BSuppM := Z({M}) = {P ∈ Spc T | M ̸∈ P}.
It follows from the definition that Z(E) =

∩
M∈E BSuppM . This means that the Balmer

supports BSuppM of objects forms a closed basis of the Balmer spectrum. For a subset
X of T , define

BSuppX =
∪

M∈X

BSuppM,

which is a specialization closed subset of Spc T .

Balmer proved the following celebrated result which gives a classification of radical
thick tensor ideals via Thomason subsets of the Balmer spectrum.

Theorem 6. [1, Theorem 4.10] There is a bijection between

(1) the set of radical thick tensor ideals of T , and
(2) the set of Thomason subsets (i.e., unions of complements of quasi-compact open

subsets) of Spc T .

Thus, the classification of radical thick tensor ideals is interpreted as the study of the
topological space Spc T . Hence determining the topological structure is an important
problem. Balmer also determined the Balmer spectra of tensor triangulated categories
Dperf(R), mod kG:

Example 7. [1, Corollaries 5.6 and 5.10]

(1) Let X be a noetherian scheme. Then SpcDperf(R) is homeomorphic to X. In
particular, radical thick tensor ideals of Dperf(R) are bijectively corresponds to
specialization-closed subsets of X.

(2) Let k be a field and G a finite group. Then Spc(mod kG) is homeomorphic to
Proj H∗(G; k). Here H∗(G; k) is the cohomology ring of G with coefficients in k.
In paticular, radical thick tensor ideals of mod kG are bijectively corresponds to
specialization-closed subsets of Proj H∗(G; k).

However, in these examples, the structure of Balmer spectra are determined by using
“complete” classification of thick tensor ideals [3, 4, 6, 9, 10]. Without classification,
the structure of Balmer spectra is difficult and mysterious. For instance, the complete



classification of radical thick tensor ideals of D−(modR) is not known and the structure
of its Balmer spectrum is very difficult even in the case of DVR.

Example 8. [8, Theorem 7.11] Let R = k[[x]] be a DVR. For any positive integer n, set

Pn := {M ∈ D−(modR) | llR(H−i(M)) ≤ cin−1 for some c ≥ 0 and any integer i},
where llR(H

i(M)) denotes the Lowey length of Hi(M). Then

(1) Pn is a prime thick tensor ideal of D−(modR),
(2) P0 ⊊ P1 ⊊ P2 ⊊ · · · .

In particular, SpcD−(modR) has infinite Krull dimension.

The motivation of this article is investigation of the structure of the Balmer spectrum
of D−(modR). As complete classification gives complete information on the Balmer spec-
trum, it is naturally expect that we obtain some information of the Balmer spectrum
using “partial” classification. We use the following result in this direction.

Theorem 9. [8, Corollary 2.11 and Theorem 2.12]

(1) There is a bijection between
(a) the set of compactly generated thick tensor ideals of D−(modR), and
(b) the set of specialization-closed subsets of SpecR.
Here, a compactly generated thick tensor ideal is the smallest thick tensor ideal
containing some set of bounded complexes.

(2) For any thick tensor ideal X , there is a unique compactly generated thick tensor
ideal C such that SuppX = Supp C

Remark 10. Original motivation of this study is to investigate Db(modR). However, this
problem is difficult since the category does not have any natural tensor structure. Thus,
instead of considering the category, we enlarge to D−(modR) and use its tensor structure.

3. Main Theorem

The main theorem of this article is the following result.

Theorem 11. Let C ∈ Db(modR) be a bounded complex.

(1) There is a bijection between
(a) the set of connected components of BSuppC, and
(b) the set of connected components of SuppC.

(2) There is a bijection between
(a) the set of irreducible components of BSuppC, and
(b) the set of irreducible components of SuppC.

Connectedness of SuppC of bounded complex C is characterized by indecomposability
of C.

Lemma 12. Let C ∈ Db(modR) be a bounded complex. If C is indecomposable, then the
cohomological support SuppC is connected.

Combining the main theorem and this lemma, we obtain the following result.

Corollary 13. Let C ∈ Db(modR) be a bounded complex.



(1) If C is indecomposable, then BSuppC is connected. In particular, if R is indecom-
posable, then SpcD−(modR) is connected.

(2) If SuppC is irreducible i.e., contains only one minimal element, then BSuppC is
irreducible. In particular, if SpecR is irrecible, then SpcD−(modR) is irreducible.

Remark 14. Carlson [5] proved the corresponding result to this corollary for the stable
category of a group ring and Balmer [2] generalized it to rigid tensor triangulated cate-
gories. We have to note that our category D−(modR) is never rigid and hence our result
is not included in Balmer’s general result.

4. Sketch of the Proof

In this section, we will give a sketch of the proof of the main theorem. Let us begin
with recalling some notions from point-set topology.

Definition 15. Let X be a topological space.

(1) We say that a subspace of X is a clopen subset if it is closed and open in X.

(2) A subspace W of X is said to be specialization-closed if for any x ∈ W , {x} ⊆ W
holds.

(3) A subspace W of X is said to be generalization-closed if for any x ∈ W and y ∈ X,

x ∈ {y} implies y ∈ W .

Remark 16. (1) Every connected component is clopen.
(2) Let W be a subspace of SpecR. Then W is specialization closed (resp. general-

ization closed) in SpecR if and only if

p ∈ W, p ⊆ q =⇒ q ∈ W (resp. q ∈ W, p ⊆ q =⇒ p ∈ W ).

(3) [1, Proposition 2.9] Let T be an essentially small tensor triangulated category and
W a subspace of Spc T . Then W is specialization closed (resp. generalization
closed) in Spc T if and only if

P ∈ W, P ⊇ Q =⇒ Q ∈ W (resp. Q ∈ W, P ⊇ Q =⇒ P ∈ W ).

In [8], authors introduced two maps between the Balmer spectrum and the Zariski
spectrum:

s : SpcD−(modR) // SpecR : S.oo

Here, the map S is defined in Example 4 and s(P) is a unique maximal element of the
set of ideal I with R/I ∈ P , see [8, Proposition 3.7]. Using these map, we will compare
the Balmer spectrum and the Zariski spectrum. For this, let me list properties of these
maps.

Proposition 17. [8, Theorem 3.9, Corollary 3.10, Theorem 4.5]

(1) s and S are order-reversing maps with respect to the inclusion relation.
(2) s is continuous.
(3) s · S = 1. In particular, s is surjective and S is injective.
(4) For any P ∈ SpcD−(modR),

SuppP = {p ∈ SpecR | p ̸⊆ s(P)}.



(5) For any P ∈ SpcD−(modR), one has

S(s(P)) = Supp−1(SuppP) ⊇ P .

Let C be a bounded complex. By Theorem 9, C ∈ X if and only if SuppC = SuppX
for any thick tensor ideal X . Therefore, by Proposition 17(5), P ∈ BSuppC if and only
if S(s(P)) ∈ BSuppC. Using these observation, we can check that

s : SpcD−(modR) // SpecR : Soo

restricts to

s : BSuppC // SuppC : S.oo

The following two lemmata are key to prove the main theorem.

Lemma 18. The above pair of maps induce a one-to-one correspondence

s : MaxBSuppC // Min SuppC : S.oo

Here, MaxBSuppC (resp. Min SuppC) is the set of maximal (resp. minimal) elements of
BSuppC (resp. SuppC).

Proof. Because S : SpecR → SpcD−(modR) is injective, we have only to check that the
map S : Min SuppC → MaxBSuppC is well-defined and surjective. Let p be a minimal
element of SuppC. We show that S(p) is a maximal element of BSuppC. Take a prime
thick tensor ideal P in BSuppC containing S(p). Then s(P) ⊆ sS(p) = p by Proposition
17. Since both p and s(P) belong to SuppC by the above argument, the minimality of p
shows the equality p = s(P). Hence, we have

SuppP = {q ∈ SpecR | q ̸⊆ s(P) = p = s(S(p))} = SuppCS(p).

This shows that P ⊆ S(p) and thus S(p) is a maximal element in BSuppC. For this
reason, the map S : Min SuppC → MaxBSuppC is well-defined.
Next we check the surjectivity of the map S : Min SuppC → MaxBSuppC. Let P be a

maximal element of BSuppC. It follows from the argument before this lemma that Ss(P)
is also an element in BSuppC. On the other hand, Ss(P) contains P by Proposition 17(3).
Thus, we get P = Ss(P) from the maximality of P . Let p be an element of SuppC with
p ⊆ s(P). Then P = Ss(P) ⊆ S(p). Since P is maximal in BSuppC, one has P = S(p).
Hence, p = sS(p) = s(P) and this shows that s(P) is a minimal element of SuppC. As a
result, one has S(p) = Ss(P) = P and this shows that S : Min SuppC → MaxBSuppCC
is surjective. □

Lemma 19. Let X is either BSuppC or SuppC. Then subset W of X is closed and open
if and only if W is specialization-closed and generalization-closed.

Proof. We show this statement only for X = BSuppC because a similar argument works
also for X = SuppC. By symmetry, we need to check that W is closed.

The key point is to prove the following equation

W =
∪

P∈MaxBSuppC∩W

{P}



SinceW is specialization closed, W ⊇
∪

P∈MaxBSuppC∩W {P} holds. Let P be an element

of W . Take a minimal element p in SuppC contained in s(P). We can take such a p since
SuppC is a closed subset of SpecR. Then

P ⊆ Ss(P) ⊆ S(p).
By Lemma 18, S(p) is a maximal element of BSuppC. Moreover, S(p) belongs to W since
W is generalization closed and P ∈ W . These show that S(p) is a maximal element of

BSuppC. Accordingly, we obtain P ∈ {S(p)} with S(p) ∈ MaxBSuppC and hence the
converse inclusion holds true.

Note that BSuppC is closed and thus contains only finitely many minimal elements.
By using the one-to-one correspondence in Lemma 18, MaxBSuppC is also a finite set.
Consequently, W is a finite union of closed subsets, and hence is closed. □
Using this lemma, the topological problem is interpreted to combinatrial problem. We

can prove the following two lemmas using this technique.

Lemma 20. Let U be a clopen subset of BSuppC. Then

(1) p ∈ s(U) if and only if S(p) ∈ U .
(2) s(U) is a clopen subset in SuppC.

Lemma 21. Let U be a clopen subset of BSuppC. Then s−1s(U) = U .

Now, we are ready to prove the main theorem.

Proof of the Main Theorem. (1) By Lemma 20(2), we obtain a well-defined order-preserving
map

{clopen subsets of BSuppC} → {clopen subsets of SuppC}, U 7→ s(U).

This map is injective by Lemma 21 and surjective since s is continuous and sujective.
Note that our topological spaces BSuppC and SuppC have only finitely many connected

components by Lemma 18 and the proof of Lemma 20. Thus, connected components are
nothing but minimal non-empty clopen subsets. Therefore, the above order-preserving
bijection restricts to the bijection what we want.

(2) By [1, Proposition 2.9], irreducible components of BSuppC are bijectively corre-
spond to its maximal elements. Thus, the statement follows from Lemma 18. □
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